A Framework for Exploring Multidimensional Data with 3D Projections

نویسندگان

  • Jorge Poco
  • Ronak Etemadpour
  • Fernando Vieira Paulovich
  • Tran Van Long
  • Paul Rosenthal
  • Maria Cristina Ferreira de Oliveira
  • Lars Linsen
  • Rosane Minghim
چکیده

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e.g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the LeastSquare Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework’s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.non-spatial) data as well as the feature space of multi-variate spatial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProxiLens: Interactive Exploration of High-Dimensional Data using Projections

As dimensionality increases, analysts are faced with difficult problems to make sense of their data. In exploratory data analysis, multidimensional scaling projections can help analyst to discover patterns by identifying outliers and enabling visual clustering. However to exploit these projections, artifacts and interpretation issues must be overcome. We present ProxiLens, a semantic lens which...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

3D Grand Tour for Multidimensional Data and Clusters

Grand tour is a method for viewing multidimensional data via linear projections onto a sequence of two dimensional subspaces and then moving continuously from one projection to the next. This paper extends the method to 3D grand tour where projections are made onto three dimensional subspaces. 3D cluster-guided tour is proposed where sequences of projections are determined by cluster centroids....

متن کامل

Visualizing and exploring tractograms via two-dimensional connectivity maps

Introduction: Reflecting the intricacy of the connectivity in the brain, 3D brain tractography models are generally visually dense. Therefore, it is often difficult to ascertain tract projections as well as anatomical and functional structures clearly. In this context, we introduce a connectivity (“dependency”) map of tract projections in a framework that uses two-dimensional map representation...

متن کامل

Conventional Voxel in Tomographic Reconstruction Based upon Plane-Integral Projections – Use It or Lose It?

Introduction: While the necessity of replacing voxels with blobs in conventional tomographic reconstruction based upon line-integrals is clear, it is not however well-investigated in plane- integral-based reconstruction. The problem is more challenging in convergent-plane projection reconstruction. In this work, we are aiming at utilizing blobs as alternative to voxels. <stron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011